
© Copyright 2025 eLabtronics. All Rights Reserved

P A G E | 1

Contents
Introduction.. 1

Part A: Design the Circuit .. 3

Part B: Build the Circuit .. 4

Part C: Program the Circuit .. 7

Part D: The Working Project .. 12

Summary .. 12

Introduction

Problem
Strain Gauges are good engineering tools which can detect strain on objects even in um.

When the strain on the structure changes, the gauge’s resistance will change accordingly.

Can we make an electronic strain gauge with the gauge and the STEMSEL E32W chip?

Background
Strain gauge (or strain gage) is a device which being used to measure the strain applied on

an object. It was invented in 1938. Strain gauge we use is like a piece of chip with patterned

metal and flexible backing. You can see several metal “lines” on the gauge surface when you

take a closer look. When you attach the piece of chip on a surface, and the object is bended

towards one side which makes the chip stretch (a stretch in um will work) on the direction

parallel to the metal line’s direction, the chip’s resistance will become higher. If the object is

bended the other direction, which put stress onto the chip, the chip’s resistance will become

lower. Strain gauges are being used for many applications, from scales to structural health

monitoring and so on.

Ideas
The most common way to use a strain gauge with a micro chip is connecting it through an

HX711 amplifier. The HX711 is designed for measuring the output from strain gauges and

converting it into a digital signal that can be processed by a microcontroller. We can make it

work by connecting it to the STEMSEL E32W board and then take the signal from the HX711

and output it onto a browser page.

runlinc Project : Strain Gauge
(E32W Version)

runlinc Project 2 B2: Smart Lights (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved

P A G E | 2

Plan
We will prepare a strain gauge, some resistors for connection, an HX711 amplifier, a

STEMSEL E32W chip and an electronic device to connect with the chip. We will connect the

strain gauge to the amplifier, then connect the amplifier to the microcontroller as input. After

coding we will output data from the microcontroller to the browser screen.

Figure 1: Block diagram of Microchip input and output

runlinc Background
runlinc is a web page inside a Wi-Fi chip. The programming is done inside the browsers

compare to programming inside a chip. The runlinc web page inside the Wi-Fi chip will

command the microchips to do sensing, control, data logging Internet of Things (IoT). It can

predict and command.

runlinc Project 2 B2: Smart Lights (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved

P A G E | 3

Part A: Design the Circuit

Note: Refer to runlinc Wi-Fi Setup Guide document to connect to runlinc

Use the left side of the runlinc web page to construct an input/output (I/O).

For port D18, name it HX711Data and set it as HX711_IN.

In our circuit design, we will be using an HX711 amplifier. We happen to have these in our

kits, so these can be used on our circuit design, as per the plan.

Figure 2: I/O configurations connections

runlinc Project 2 B2: Smart Lights (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved

P A G E | 4

Part B: Build the Circuit

Use the STEMSEL E32W board to connect the hardware. For this project we are using

both the left and right I/O ports, with negative port (-ve) on the outer side, positive port

(+ve) on the middle and signal port (s) on the inner side (as shown below).

Figure 3: Negative, Positive and Signal port on the E32W board

runlinc Project 2 B2: Smart Lights (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved

P A G E | 5

Wiring instructions

Figure 4: Circuit Diagram

Figure 5: corresponding connection of the resistor, gauge and wires to the HX711 using a

PCB [[(grey wires are connected to the gauge)

runlinc Project 2 B2: Smart Lights (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved

P A G E | 6

Refer to the circuit diagram to connect the components. The ‘ ’ is a symbol of the output

voltage by the circuit containing 3 ‘R1’s and the strain gauge (R3). The chosen ‘R1’s’

resistance should be as close to the resistance of the strain gauge as possible, buy 20 or more

resistors with resistance close to the gauge and test them to find the closest one. The lines in

the graph are wires, so you can just connect them and make a square correspondingly, then

connect the rest of the wires, which are the colored lines in the graph. Please note that the

connection between hx711 and the E32W chip need us to connect the wires to not just

different ports, but also different rows. The ‘GND’ pin on hx711 need to be connected to -ve

row, ‘DT’ and ‘SCK’ need to be connected to signal row (the one on the other side of GND

next to 3V3) and the ‘VCC’ pin need to be connected to +ve row.

runlinc Project 2 B2: Smart Lights (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved

P A G E | 7

Part C: Program the Circuit

Now we can start to program the functions to use the sensor and display the data on our

screen.

For CSS type in the following code:

For HTML type in the following code, including a simple data display and a data graph canvas:

div.a{
 font-size: 25px;
}

p2 {
 color: blue;
 font-family: Arial, Helvetica, sans-serif;
 font-size: 30px;
}

p {
 font-family: Arial, Helvetica, sans-serif;
}

h1 {
 font-family: Arial, Helvetica, sans-serif;
}

<p>Raw Strain Sensor:

<button onclick="zero()">ZERO</button>

Scale Factor: <input type="text" id="InputText" value="0.000851">

</p>

runlinc Project 2 B2: Smart Lights (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved

P A G E | 8

Put the following code into the JavaScript window:

<p2></p2>
<div style="text-align:center">
 <h1 style="color: darkblue;">Pipe Strain Graph</h1>
 <div>

 </div>

 <svg height="350" width="600">
 <polyline id="tempGraph" style="fill: none; stroke: darkred; stroke-width:3" />
 <text x="95" y="315" fill="black">0</text>
 <text x="65" y="15" fill="black">1000</text>
 <text x="70" y="72" fill="black">800</text>
 <text x="70" y="130" fill="black">600</text>
 <text x="70" y="189" fill="black">400</text>
 <text x="70" y="247" fill="black">200</text>
 <text x="320" y="340" fill="darkblue">Time</text>
 <text x="10" y="150" fill="darkblue" transform="rotate(-90 20,150)">Pipe Strain
(umm/mm)</text>
 <line x1="100" y1="300" x2="600" y2="300" stroke="black"/>
 <line x1="100" y1="0" x2="100" y2="300" stroke="black"/>
 </svg>
</div>

ZValue = 0;
value = 0;

function zero() {
ZValue = parseFloat(rawSensor);
}

function updateStrain() {
 rawSensor = HX711_In(HX711Data);
 value = parseFloat(rawSensor) - ZValue;

 var ScaleVtxt = document.getElementById("InputText").value;
 ScaleV = parseFloat(ScaleVtxt);
 Avalue = parseInt(value * ScaleV);

 document.getElementById("Message").innerHTML = rawSensor;
 document.getElementById("ZeroValue").innerHTML = ZValue;
 document.getElementById("StrainD").innerHTML = Avalue;

 let strainVal = Avalue;
 document.getElementById("StrainD").innerText = strainVal ;
 // Getting sensor value and pushing it to the corresponding array
 var currentTemp = parseInt(strainVal / 10); // Scaled to graph
 console.log(`${currentTemp}`);

 // Push current sensor value if it exists
 if (!isNaN(currentTemp)) {
 tempValues.push(currentTemp);

 // Update the graph and display values
 updatedGraph();
 displayValues();
 }

}

runlinc Project 2 B2: Smart Lights (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved

P A G E | 9

The code here includes 4 parts, the 1st part is the function for the ‘ZERO’ button, which will add

or minus a value to the current reading, to zero the readings on the screen. The 2nd part is the

‘update strain’ function. It includes taking the reading from the sensor, and some calculations to

distribute the current reading onto the screen, and the calling of the 3rd and 4th parts. The 3rd

// Graph display parameters (You'll still need to alter the position of the y axis numbers
manually)
var Height = 300; // Height of the graph
var Width = 500; // Width of the graph
var MaxValue = 103; // The maximum value that you want the graph to have within its
bounds
var StartingWidth = 100; // The starting width of the graph
var widthPerSample = 5; // The horizontal distance between 2 graph points
var maxWidthSample = Width / widthPerSample;
var i = 0;

// Sensor values + points
var currentTemp;

var tempValues = [];
var tempPoints = [];

// Function to update the graph
function updatedGraph(){
 // If the amount of points is greater than the width of the graph
 if (tempValues.length > maxWidthSample) {
 // Clear the temperature points
 tempPoints = [];
 tempValues.shift();

 // Set the new points
 for (var j = 0; j < maxWidthSample; j++) {
 tempPoints[j] = ((StartingWidth - 5 * i) + widthPerSample * j) + "," + (Height -
tempValues[j] * (Height / MaxValue));
 }
 }
 else {
 // Append a point to the array
 tempPoints[i] = StartingWidth + "," + (Height - tempValues[i] * (Height /
MaxValue));

 StartingWidth += 5;
 i++;
 }

 // Set the points on the polyline
 var tempGraph = document.getElementById('tempGraph');
 var updatedTempPoints = tempPoints.join(" ");
 tempGraph.setAttribute('points', updatedTempPoints);
}

// Simple function to display the value of the strain
function displayValues(){
 document.getElementById('StrainD').innerHTML = "Current Pipe Strain: " + Avalue +
" umm/mm";
}

runlinc Project 2 B2: Smart Lights (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved

P A G E | 10

part gives parameters for the drawing of the line on the graph, and automatically updates the

graph. The 4th part simply display the strain value on the screen.

Put the following code into the JavaScript Loop window to make the program run and update

the values on the screen every 2 seconds:

The final runlinc IDE page should look like this:

updateStrain(); // Update Strain Sensor Values and Display

await mSec(2000);

runlinc Project 2 B2: Smart Lights (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved

P A G E | 11

Figure 5: runlinc webpage screenshot

runlinc Project 2 B2: Smart Lights (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved

P A G E | 12

Part D: The Working Project

If you successfully built the circuit and the program correctly, it should act as what this part

describe:

After pressing ‘run code’, the following screen will show up. If you click on the ‘ZERO’

button, the reading on the graph will return to zero.

Figure 6: working reading screen

When the project is running, a small strain change to the strain gauge will make the reading

change accordingly.

Summary

Strain gauges are being widely used in our lives, and we can use them with the E32W board

to make a strain detector as well. By simply connecting the amplifier and the gauge to the

board and using the runlinc IDE’s built-in function, we can read the strain from the gauge

easily. We can also make some other functions, such as a strain graph that shows the current

strain, which updates over time if we want, and even make a connected system which reacts

based on the strain gauge’s reading…

